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Abstract

Modern Reinforcement Learning (RL) in partially observable settings requires
agents to perform sequence modeling over a history of states. While Transformers
are highly effective, their quadratic O(n2) computational complexity is often
prohibitive for resource-constrained applications like robotics. In this paper, we
investigate Test-Time Training (TTT), an efficient O(n) RNN-style architecture
that adapts its weights online via backpropagation at inference time. Our goals
are twofold: (1) apply TTT to a sequential RL task, and (2) introduce a "gradient
stopping" method to dynamically trade inference speed for accuracy. To overcome
the inherent training instability of TTT , we develop a robust imitation learning
pipeline that uses a privileged expert to train the TTT agent with Behavioral
Cloning (BC) and Dataset Aggregation (DAgger). We evaluate our method on
position-only variants of CartPole-v1 and AcroBot-v1, which requires temporal
reasoning to solve. On AcroBot-v1, TTT achieves an average reward of -65.93,
which is comparable to the Transformer’s score of -64.48. On CartPole-v1,
our stabilized TTT agent achieves an average episode length of 266.64, under-
performing the Transformer’s baseline score of 434.9. Moreover, our gradient
stopping heuristic proved to not be effective, as performance degraded faster than
inference speed improved. We conclude that TTT, when paired with a robust
imitation learning strategy, is a powerful and computationally efficient alternative
to Transformers for sequential RL, though further experimentation with criteria for
when to pause gradient updates is required. These findings suggest that TTT may
be a viable alternative to Transformers in real-time RL applications, particularly for
deployment on low-resource systems such as drones or embedded devices where
accuracy can sometimes be traded for inference speed.

1 Introduction

Many real-world Reinforcement Learning (RL) tasks, particularly in fields like robotics, take place in
partially observable environments. In these settings, the agent cannot rely on the current observation
alone and must reason over a history of past interactions to infer the true state of the world. This
necessity introduces the challenge of sequence modeling into the RL paradigm.

Transformers (Parisotto et al., 2019) have emerged as the dominant architecture for sequence modeling
tasks, delivering state-of-the-art performance by using an attention mechanism to capture long-range
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dependencies. However, the self-attention mechanism’s computational and memory complexity
scales quadratically with the sequence length (O(n2)), posing a significant bottleneck for applications
requiring low latency and efficient use of resources. More efficient architectures like Recurrent Neural
Networks (RNNs) (Bakker, 2001) and State Space Models (SSMs) (Gu et al., 2022) offer O(n) or
near-linear complexity but often struggle to match the performance of Transformers, especially on
tasks with long-term dependencies (Arora et al., 2023).

In this paper, we investigate Test-Time Training (TTT) (Sun et al., 2025), a novel RNN-style
architecture that seeks to bridge this gap. TTT models adapt online by performing gradient updates
on their own weights (which serve as the recurrent hidden state) at each step during inference. This
allows the model to continuously learn from incoming data streams, making it robust to distributional
shifts. Our work explores the application of TTT to sequential RL problems. We are motivated by the
potential of TTT to match the performance of Transformers while retaining the O(n) efficiency of
recurrent models. We also propose an interpolation between the fixed, offline adaptation of models
like Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) and the continuous online adaptation
of TTT. We hypothesize that by selectively skipping gradient updates during periods of observational
stability, we can further improve TTT’s efficiency with minimal performance loss.

Our contributions are twofold: (1) We present a robust training pipeline using imitation learning
that overcomes some of the inherent instabilities of training TTT-based policies but nevertheless
underperforms transformers. (2) We introduce and evaluate a "gradient stopping" method for
dynamically managing the computational cost of test-time updates, analyzing the resulting trade-off
between inference speed and policy accuracy.

2 Related Work

2.1 Online Learning

Our work is closely related to the field of online or streaming learning in reinforcement learning,
where an agent must learn continuously from incoming data without relying on large replay buffers
or batch updates. This paradigm is particularly challenging due to the non-stationarity of the data
stream, which can lead to catastrophic forgetting or training instability. A significant challenge in this
area is the "stream barrier," a phenomenon where deep RL algorithms that are stable in batch settings
often fail when adapted to a streaming context (Elsayed et al., 2024).

The work by Elsayed et al. (2024) introduces techniques to overcome this barrier, enabling deep
RL agents to learn stably and efficiently from a single data stream. Their approach shares a similar
motivation with our work on TTT: enabling robust, moment-by-moment adaptation in resource-
constrained settings. While their focus is on eliminating replay buffers for standard RL algorithms,
the problem of maintaining stability during continuous updates is directly analogous to the challenge
of stabilizing the test-time gradient steps in TTT. Our use of imitation learning with DAgger can be
seen as one strategy to provide a stable, supervised signal to guide the online adaptation process,
addressing a similar instability problem from a different perspective.

2.2 Training at Test-Time

Training at Test-Time (TTT), as presented by Sun et al. (2025), is formulated as a Recurrent Neural
Network (RNN) where the hidden state is a weight tensor which parametrizes an "inner" model. The
update rule is defined by standard gradient backpropogation. There is also an "outer" model which
defines the labels for which the inner model’s backpropagation is defined by. In sum, one can think
of the outer model as defining a supervised, online learning task for the inner model. This scheme is
illustrated in Figure 1.
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Figure 1: High-level depiction of the TTT pipeline.

2.3 Model-Agnostic Meta-Learning

Model-Agnostic Meta-Learning (MAML), as presented by Finn et al. (2017), is a meta-learning
methodology for pre-training a single RL policy which can be cheaply adapated to a variety of
downstream tasks. In the MAML training procedure, we pretrain our model on a pre-defined set of
tasks simultaneously using a meta-learning scheme. Then, during inference time, we can adapt our
model for one of the specific tasks using a small number of fine-tuning steps on labeled data from
that task. This enables us to maintain a single pretrained model which can be cheaply deployed to a
variety of pre-defined tasks.

To clarify distinctions: MAML focuses on fast adaptation across tasks via meta-learning but lacks
online updates; TTT adapts at every step during inference; and streaming RL emphasizes continual
learning from non-stationary data without replay buffers. Our method intersects all three by stabilizing
TTT through imitation learning in a streaming context.

3 Experimental Setup & Method

3.1 Environment

(a) CartPole-v1 environment: The agent applies
discrete left or right forces to balance an upright
pole on a moving cart.

(b) AcroBot-v1 environment: The agent applies
torque at the joint between two connected links to
swing the outer link above a target height.

Figure 2: Environments used for training and evaluation.

We train and evaluate our policies on a vanilla and masked variant of CartPole-v1 (Barto et al.,
1983), which is shown in Figure 2a. The action space for CartPole-v1 is {0, 1}, where 0 corresponds
to pushing the cart left and 1 corresponds to pushing the cart right. Moreover, the observation space
is {o = (x, v, ,!)|o 2 R4

, x 2 [�4.8, 4.8], z 2 [�0.418, 0.418]}. The first and third features
correspond to position and angle, whereas the second and fourth features correspond to velocity and
angular velocity.

In our masked variant, we modify the observation space to be {o = (x, z)|o 2 R2
, x 2

[�4.8, 4.8], z 2 [�0.418, 0.418]}. In other words, only position and angle are visible and the
velocity features have been masked to simulate the environment known as "Position-only CartPole".
Masking out the velocity information requires the model to create a memory of the previous states to
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reconstruct the velocity information, effectively introducing a temporal dependency and converting
the problem to a Partially Observable Markov Decision Process (POMDP).

An episode terminates if the agent is no longer remaining upright or is out of bounds. These bounds
are defined as the limits on x and z in the definition of the observation space. The reward function is
relatively simple, defined as R(s) = 1. Thus, the episode length is equal to the episodic reward. The
max possible episodic reward is 500.

To ensure that our methods generalized, we also tested the implementations on the AcroBot-v1
environment (Sutton, 1995), which is shown in Figure 2b. The AcroBot-v1 environment is comprised
of a chain with two links (the angle of each joint being ✓1 and ✓2, which are ↵ and � in the diagram).
The action space here is the torque applied on the actuated joint between two links, and the goal is
to swing the chain above a given height after starting hanging downwards. For the fully observable
variant, we give the models access to the rotational joint angles as well as the angular velocities. The
masked version only has the angles cos and sin of ✓1 and ✓2, and the angular velocities are masked
out. Reward is defined as -1 for each timestep the goal is not reached (incentivizing high swing height
as early as possible) and the target heigh results in termination with a reward of 0. The episode ends if
the episode length is greater than 500, or if cos(✓1)� cos(✓2+ ✓1) > 1. The episodic reward is upper
bounded by 0 (this can not be achieved in practice, since it would require completion in 0 steps).

3.2 Algorithms

In this paper, we present two novel developments: a reliable training methodology for TTT-
parameterized RL policies and a method for reducing the computational footprint of TTT by interpo-
lating between TTT and MAML. To apply both TTT and Transformers to an RL domain, we trained
them with an action head to project the final layer into the action space for the environment. When
training with PPO, we also introduced a critic head for value estimation. With the addition of these
projections and the development of methods used to produce trajectories and initialize the models, we
developed both a TransformerActor and TTTActor. The TransformerActor was trained with Proximal
Policy Optimization (PPO) Schulman et al. (2017). We also used PPO to train a simple MLPActor as
a baseline. Both the MLP and Transformer baseline training implementations build upon the code by
Huang et al. (2022).

3.2.1 Training the TTT Actor

Our first hurdle was to devise a reliable method for training TTT-parameterized RL policies. RNNs
notoriously exhibit unstable training dynamics due to gradients being backpropagated through the
entire recurrent network call stack. Moreover, due to the meta-learning mechanism in TTT, these
instabilities are compounded. We observe this in practice: while PPO (Schulman et al., 2017) is
sufficient for training MLP and Transformer policies, TTT struggles to learn (depicted in Figure 3).

Figure 3: Comparison of training dynamics between a policy parameterized by a Transformer
versus TTT using PPO on masked CartPole-v1, showing that PPO alone is ineffective to train the
TTTActor.
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In order to improve TTT performance, we applied a method called "Learning by Cheating" by Chen
et al. (2019), where a privileged model has access to information about the environment which the
target model lacks. The "Learning by Cheating" approach assumes that we can train a near-optimal
expert policy by giving it access to the fully-observable state, and that its expertise can be effectively
transferred to the TTT agent, which only experiences partial observability.

We first apply this insight by training an MLPActor for each of the fully-observable versions of the
environments (which an MLP is sufficient to solve) and use these "experts" to train TTTActors on the
partially observable versions of each environment. We initially perform behavior cloning followed
by PPO, but discovered highly unstable training dynamics. We then incorporated a mix of both
behavioral cloning and dataset aggregation (DAgger) (Ross et al., 2011) to learn from the privileged
expert MLPActors, which was sufficient to produce stable training dynamics. We build a custom
implementation for this training approach, as shown in Figure 4. This was the final architecture we
used to train TTT on both environments, and the one which produced the best results.

Figure 4: Approach used to train the TTT Actor.

Note: We also use this pipeline to train the Transformer in Acrobot-v1, since PPO fails to learn in this
environment. Conversely, our BC + DAgger pipeline fails to train the Transformer in Cartpole-v1,
thus we use PPO in this case.

3.2.2 Gradient Stopping Heuristic for TTT Efficiency

By viewing TTT as an adaptation of MAML, and to take advantage of an interpolation between these
two methods, we aimed to improve the usability of TTT for RL by providing a mechanism through
which to make a tradeoff between model accuracy and inference speed/computational burden.

We do so by selectively performing gradient updates for TTT during inference time by noticing that
all backpropogations result in a similar number of FLOPs at this step, but they have varying degrees
of usefulness based on the state of the environment and the actor.

To take advantage of this, we must find a signal to use in order to determine the right steps to stop
backpropogation. We investigate two main metrics: the effective learning rate (⌘) as well as the norm
of the gradient with regard to the output token. To determine the cutoffs, we first collected data on
their distributions, as presented in Figure 5.
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Figure 5: Prevalence of various learning rates and gradient norms during inference.

Note that there’s an ⌘ value for each head and each layer of the network. We noticed that learning
rates and gradient norms tended to rise in later layers, but it seemed like early layers’ learning rates
and gradient norms tended to stabilize and drop after a certain number of environment steps. We
suspect that early layers are learning low-frequency policy features while later layers are learning
high-frequency features.

Based on the relative predictability and clustering of the gradient norms in particular, we decided to
base the cutoff on the size of the gradient norm. Namely, if the gradient norm is below a threshold, we
choose not to do backpropagation. We refer to this method as "gradient stopping." We experiment with
many different thresholds – the more gradient updates we stop, the worse the expected performance
but the lower the expected FLOPs.

Since backpropoagation is performed over batched matrices across all layers and heads, selectively
stopping updates for individual parts would lead to significant overhead. Thus, we compute the
gradient stopping threshold by averaging across all layers and heads.

4 Quantitative & Qualitative Results

4.1 Fully Observable Environment

First, we perform some baseline experiments. To validate that our implementations were correct, we
train an MLP, Transformer, and TTT policy on the fully observable CartPole-v1 environment. All
three architectures are able to learn optimal policies, as expected. We include a sample training log in
Figure 6. Note that although all three policies were able to achieve max performance, TTT suffered
from large training variance. After learning an optimal policy, the model suddenly collapses to near
0 performance before repeating another equally large fluctuation. This further motivates the TTT
training pipeline with increased stability described in methods.
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Figure 6: MLP, Transformer, and TTT obtaining optimal reward on fully observable CartPole-v1
using PPO.

4.2 Partially Observable Environment

Architecture + Algorithm Avg. Ep Length (masked CartPole-v1)
MLP w/ PPO 45.08
Transformer w/ PPO 434.90
TTT w/ PPO 43.78
TTT w/ PPO + BC 180.00
TTT w/ BC + DAgger 266.64

Figure 7: Average episode length of MLP, Transformer, and TTT agents on the partially observable
CartPole-v1 task. Higher values indicate better policy performance.

Next, we applied our TTTActor, MLPActor, and TransformerActor to the partially observable
CartPole-v1 environment to evaluate their sequence modeling capabilities. The performance of
each architecture and training permutation is summarized in Figure 7.

As shown in the figure, the MLPActor was not able to learn more than an essentially random policy,
achieving an average episode length of only 45.08. This was expected, as the MLP has no mechanism
to capture the temporal dependencies required to solve this problem. Qualitatively, the MLPActor
oscillates left-and-right since it can tell if it is falling one direction or the other by position only.
However, since it can not calculate velocity, it overcorrects in the opposite direction and ends up
oscillating wider until falling. We attempt to depict this in Figure 8 although it is difficult to fully
perceive the trajectory without embedding a video. The TransformerActor, serving as our state-of-
the-art baseline, successfully learned an effective policy and achieved a high average episode length
of 434.90. This demonstrates that the task is solvable with a powerful sequence model.

Figure 8: Failure trajectory under MLP. Begins in balanced state but progressively overcorrects,
leading to loss of control and pole collapse.

The TTTActor’s performance was highly dependent on the training methodology, highlighting the
instability of recurrent meta-learning systems: (1) When trained with PPO alone, the TTTActor
struggled with instability and performed on par with the MLP, reaching an average episode length
of only 43.78. (2) Adding Behavioral Cloning (BC) pre-training before PPO fine-tuning offered
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a significant improvement by providing a better initialization, raising the score to 180.00. (3)
Our final proposed method, training the TTTActor with a combination of BC and DAgger from a
privileged expert, yielded the best result at 266.64. This demonstrates the necessity of a stabilized,
imitation-based learning pipeline for making TTT effective and competitive in a sequential RL setting.

Qualitatively, we noticed that the TTTActor was able to stay within the angular bounds of the
environment quite successfully. However, it would often smoothly drift either left or right during the
trajectory, eventually going out of bounds as depicted in Figure 9:

Figure 9: Failure trajectory of TTT. Begins in balanced state but continually corrects left, leading to
loss of control and pole moving out-of-bounds.

We believe this illuminated the failure mode of TTT; while it could successfully temporally local
behavior, it was unable to address drift across the entire sequence. This is a type of sequence modeling
weakness that is characteristic of RNNs.

Architecture + Algorithm Avg. Ep Reward (AcroBot-v1)
MLP w/ PPO -496.42
Transformer w/ BC + DAgger -64.48
TTT w/ BC + DAgger -65.93

Figure 10: Average episode length of Transformer and TTT agents on the partially observable
AcroBot-v1 task. Higher values indicate better policy performance.

For generality, we also test our training pipeline on Acrobot-v1, which is depicted in 10. TTT and
transformer achieve essentially equivalent episodic rewards on this slightly simpler task.

Ultimately, the success of the DAgger-based pipeline stems from its ability to provide a stable,
supervised learning signal. Standard RL methods like PPO rely on noisy, often delayed reward signals
for credit assignment. This challenging exploration problem is compounded by TTT’s recurrent
meta-learning dynamic, leading to training instability. In contrast, DAgger provides immediate,
expert-labeled actions for every state the agent visits, converting the problem into a more stable
supervised learning task that is better suited to TTT’s online weight updates.

4.3 Gradient Stopping

(a) Effect of removing gradient steps based
on various thresholds on GPU FLOPs.

(b) Effect of stopping gradients during test-time on inference
speed.

Figure 11: Impact of gradient stopping on both computational cost and inference speed.
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For our exploration of gradient stopping to improve speed / FLOPs at the cost of accuracy, we
performed a sweep of the gradient norm of the loss with regard to the output token (using the masked
CartPole-v1 environment). This gradient is calculated prior to any backpropagation, so we avoid
incurring the cost of calculating and propogating gradients for the whole inner network. As shown
in Figure 11a, skipping backpropagation based on low gradient norms led to a clear reduction in
GPU FLOPs, confirming that the heuristic can lower inference-time computational overhead. We
discovered a clear correlation between increased gradient stopping and decreased episodic reward.
Qualitatively, we also observed that increased gradient stopping was correlated with less smooth and
more erratic policy behavior.

However, this gain in efficiency came at a cost. As shown in Figure 11b, once the threshold
became too aggressive (e.g., stopping all gradients with norms below 70), the average forward time
unexpectedly increased. We speculate that this might be happening due to two compounding effects:
First, performance suffers significantly when most gradient updates are skipped, leading to shorter
episode lengths, more frequent environment resets, and lower cache utilization/hit rates. While
individual resets are inexpensive, their cumulative overhead may start to dominate. Second, the
control flow behind the frequent gradient skipping (e.g. conditional execution, memory reuse, etc)
may inhibit efficient batching and caching within the deep learning framework itself.

5 Discussion

Our results highlight two key findings: (1) Test-Time Training, despite its inherent training complexi-
ties, can be made into a effective sequence model for reinforcement learning. The failure of direct
PPO training underscores the challenge of stabilizing recurrent meta-learning systems. However,
the success of our imitation learning pipeline, which uses a privileged expert and DAgger, provides
a clear and effective recipe for training these models. With our pipeline, we are able to train a
TTT model that performs equally to a Transformer model on AcroBot-v1, while there remains
a performance gap in CartPole-v1. Nevertheless, TTT remains theoretically far more efficient
than the attention mechanism in Transformers (O(n) vs. O(n2)). We also believe that our training
methods leave significant room for improvement. A major challenge we faced was deciding whether
a model’s under-performance was due to inherent limitations or poor hyperparameter choice. For
instance, is there an inherent reason TTT cannot learn an effective policy with PPO, or did we simply
not discover an appropriate hyperparameter configuration? Our success in training a TTT model on
AcroBot-v1 lends credence to our belief that TTT could also achieve competitive performance on
CartPole-v1 given the correct setup and more time performing hyperparameter sweeps. We hope
that our results act as groundwork for future investigations into operationalizing TTT as a compelling
architecture for resource-constrained, long-context RL applications. We believe it could push the
frontier of sophistication for policies served on smaller, less powerful hardware, such as autonomous
robots.

(2) Our exploration of dynamic gradient stopping reveals the subtleties of online adaptation. The
simple heuristic of skipping updates based on gradient norm was not as effective as we hoped; it
created an undesirable accuracy/efficiency trade-off. This suggests that the magnitude of the gradient
alone is not a sufficient signal to determine the utility of a learning step. One point of interest is
that removing only the very smallest gradients (i.e., using a very small ⌧ ) sometimes led to a minor
improvement in performance. This may indicate that these small updates are effectively noise, and
pruning them can stabilize the online learning process. However, we were unable to devise a reliable
formula for producing this effect. This points to a potential avenue for improving the core TTT
framework itself, perhaps through gradient regularization rather than a hard cutoff (which could also
be implemented more cleanly and effectively in a kernel).

The inconsistent nature of the gradient norms, as seen in our analysis, likely makes it difficult for a
single, global threshold to be effective. A more sophisticated mechanism, perhaps one that considers
both the learning rate and the gradient norm, or even a learned model that decides when to update,
may be required to find a more favorable point on the efficiency-performance curve. However, we
still believe that the ability of TTT to provide this tradeoff is a key and underexplored capability of
the model architecture which still shows significant promise.

Finally, we also note that, out of necessity, we train our baseline Transformer policy using our
BC + DAgger pipeline in Acrobot-v1 and with PPO in Cartpole-v1. This choice is motivated
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by the failure of PPO to learn a successful policy in Acrobot-v1 and failure of BC + DAgger in
Cartpole-v1. We suspect that BC + DAgger performs better than PPO in Acrobot-v1 since its
reward environment is sparser and thus an expert is necessary to boost reward signal. We do not have
a good explanation for why PPO works better for the Transformer in Cartpole-v1.

6 Conclusion

In this work, we successfully adapted the Test-Time Training (TTT) architecture for use in sequential
reinforcement learning. We demonstrated that by using a robust imitation learning strategy based
on DAgger, BC, and a privileged expert, we could overcome the training instabilities inherent to
TTT and achieve performance nearly on par with a state-of-the-art Transformer baseline. This result
validates TTT as a computationally efficient and powerful alternative for RL problems requiring
temporal reasoning; though it requires some extra setup and modification to the environment. Our
secondary contribution, a method for dynamically skipping test-time gradient updates, failed to
provide a favorable tradeoff but validated the notion of providing an inference-time lever for resource
usage. This highlights that while TTT is powerful, naively reducing its computational load can
significantly harm its adaptive capabilities.

7 Future Work

Our findings open up several avenues for future research:

• Bridging the Performance Gap: Further work is needed to close the remaining performance
gap between TTT and Transformers in all environments. This could involve exploring more
advanced TTT architectures, more sophisticated self-supervised learning objectives, or more
extensive hyperparameter sweeps.

• Intelligent Gradient Stepping: A key area for improvement is the gradient stopping
mechanism. Future work could explore learning a parametric function to decide when to
perform a gradient step, potentially taking into account state novelty, policy entropy, or other
signals in addition to the gradient norm.

• Gradient Regularization: Instead of a hard cutoff, incorporating a regularization term into
the training objective that penalizes frequent or large updates could encourage the model to
learn to make more efficient use of its test-time updates inherently.

We are also broadly interested in better understanding how RL performance scales with compute
resource allocation. In our results, we discover that, gradient stopping degrades performance at a
faster rate than it saves compute by overall percentage. In future work, we would like to explore how
this axis of compute-performance scaling compares to that of other architectures and algorithms. For
instance, we wonder whether simply decreasing parameter count would yield a similar relationship
between computational resources and policy performance. If not, is TTT’s scaling under or over-
performing alternative scaling axes? Moreover, we are interested in analyzing TTT’s efficiency in an
embedded hardware setting, specifically when being served on a robot or other autonomous piece of
hardware.
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8 Team Contributions
• Alex Waitz: Integrated TTT with episodic PPO and implemented DAgger from scratch.

Setup and ran experiments. Tuned hyperparameters for improved learning. Set up data
collection for TTT and analyzed internal gradient behavior.

• Vrushank Gunjur: Set up testing environment and baselines such as transformer on fully
and partially observable environments. Did timing and performance benchmarking for
gradient stopping. Built TransformerActor and MLPActor. Implemented TTT verbosity for
analysis of gradient norms, learning rates etc.

• Kenny Dao: Set up environment, implemented BC, ran experiments, explored expansion
into other environments, etc.

Changes from Proposal Our initial proposal centered on developing a reinforcement learning
framework to actively guide the adaptation process of a TTT agent, where an "outer" RL agent
would learn a policy for how and when to update the "inner" TTT model. However, we discovered
that stabilizing the training dynamics of the TTT-parameterized policy within an RL context was a
significant and foundational challenge. Consequently, our project’s focus shifted. We pivoted from
developing an RL meta-controller to first establishing a robust training methodology for the TTT
agent itself. This led us to employ a "learning by cheating" paradigm with Dataset Aggregation
(DAgger), a technique not outlined in the original proposal. Subsequently, we replaced the proposed
learned adaptation policy with a simpler, heuristic-based method, "gradient stopping," to explore the
efficiency trade-offs. In essence, the project evolved from investigating a learned adaptation policy to
first making TTT viable in RL and then evaluating a simpler heuristic for its efficiency.
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